LOS NUMEROS FRACCIONARIOS


En esta página encontraras información respecto a operaciones de suma, resta, de fraccionarios con igual y diferente denominador. 




 
El concepto matemático de fracción corresponde a la idea intuitiva de dividir una totalidad en partes iguales, como cuando hablamos, por ejemplo, de un cuarto de hora, de la mitad de un pastel. Tres cuartos de hora no son, evidentemente, la misma cosa que las tres cuartas partes de un pastel, pero se “calculan” de la misma manera: dividiendo la totalidad (una hora, o el pastel) en cuatro partes iguales y tomando luego tres de esas partes.  Por esta razón, en ambos casos, se habla de dividir dicha unidad (una hora, un pastel, etc.) en 4 partes iguales y tomar luego 3 de dichas partes.

Una fracción se representa matemáticamente por números que están escritos uno sobre otro y que se hallan separados por una línea recta horizontal llamada raya fraccionaria.



La fracción está formada por dos términos: el numerador y el denominador. El numerador es el número que está sobre la raya fraccionaria y el denominador es el que está bajo la raya fraccionaria.

TÉRMINOS DE UNA FRACCIÓN

a Numerador
-
b Denominador
 

El Numerador indica el número de partes iguales  que se han tomado o considerado de un entero. El  Denominador indica el número de partes iguales en que se ha dividido un entero.

Por ejemplo, la fracción   3 / 4  (se lee tres cuartos) tiene como numerador al 3 y como denominador al 4. El 3 significa que se han considerado 3 partes de un total de 4 partes en que se dividió el entero o el todo.

La fracción  1 / 7 (se lee un séptimo) tiene como numerador al 1 y como denominador al 7. El numerador indica que se ha considerado 1 parte de un total de 7 (el denominador indica que el entero se dividió en 7 partes iguales).


Ejemplos:


Hay 8 partes de las cuales se han pintado 5, por lo tanto, la fracción que representa matemáticamente este dibujo es 5 / 8 (se lee cinco octavos).

 

Hay 3 partes pintadas de un total de 5. Esto se representa como 3 / 5 (se lee tres quintos)

 
FRACCIONES HOMOGENEAS Y HETEROGENEAS
 
Cuando  tienes dos o mas fracciones puedes determinar si son homogeneas o heterogeneas, con solo observar el denominador en cada una de estas.

FRACCIONES HOMOGÉNEAS

Son las fracciones que tienen igual denominador.

Ejemplo:  2/4 y 5/4  el denominador en ambos casos es el 4, son cantidades iguales.

FRACCIONES HETEROGÉNEAS

Son aquellas que tienen diferentes denominadores.

Ejemplo: 4/5 y 6/2  tienen diferente denominador y para este caso son 5 y 2, por ello son heterogéneas.



SUMA Y RESTA DE NUMEROS FRACCIONARIOS


SUMA DE FRACCIONES HOMOGENEAS

1/5 + 2/5 = 3/5  se suman los numeradores y se coloca el mismo denominador




SUMA DE FRACCIONES HETEROGÉNEAS


se traza la raya fraccionaria y en la posición del numerador escribimos la multiplicación del primer numerador por el segundo denominador mas, esto quiere decir que el resultado de la primera multiplicación lo sumamos con el de la siguiente multiplicación que consiste en la multiplicacion del primer denominador por el segundo numerador y resolvemos encontrando asi el valor para el numerador del ejercicio planteado; seguidamente multiplicamos denominador por denominador y ubicamos el resultado de este en la posición del denominador; obteniendo asi el resultado del ejercicio trabajado para este caso suma de fraccionarios heterogéneos. Tal como lo indica la imagen. 

RESTA DE FRACCIONES HOMOGÉNEAS

7/4 - 5/4 = 2/4  se restan los numeradores y se coloca el mismo denominador



RESTA DE FRACCIONES HETEROGÉNEAS



se traza la raya fraccionaria y en la posición del numerador escribimos la multiplicación del primer numerador por el segundo denominador menos esto quiere decir que restamos este resultado de la primera multiplicacion con el de la siguiente lmultiplicacion; primer denominador por el segundo numerador y resolvemos encontrando asi el valor para el numerador del ejercicio planteado; seguidamente multiplicamos denominador por denominador y ubicamos el resultado de este en la posición del denominador; obteniendo asi el resultado del ejercicio trabajado para este caso suma de fraccionarios heterogéneos. Tal como lo indica la imagen. 


REALIZA EL PROCESO DE LOS SIGUIENTES EJERCICIOS
 
  1. 5/9 - 4/5
  2. 12/24 + 7/24
  3. 15/13 - 11/13
  4. 5/6 + 7/4










 


 
Anonymous

Anónimo

08 Aug 2019 - 06:55 am

Comprar Levitra Farmacias Andorra Viagra Zollfrei Deutschland generic viagra Achat Levitra France Viagra Delivered To Po Box

Anonymous

Anónimo

05 Aug 2019 - 02:45 pm

Cialis Tempo Di Azione 40 Mg Cialis Buy Online cialis Effexor Xr India

Anonymous

Amelia

23 Aug 2016 - 04:20 pm

Amelia no entiendo me enseñaron de otra manera

Anonymous

Amelia

23 Aug 2016 - 04:17 pm

No entiendo pero me pueden ayudar a mi me enseñaron de otra manera pero me olvidé

Agregar un comentario

Tu nombre

Tu dirección de correo (no se mostrará)

Mensaje *

© 2020 edilsa hidalgo martín

13143